Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We design a system that learns how to edit visual programs. Our edit network consumes a complete input program and a visual target. From this input, we task our network with predicting a local edit operation that could be applied to the input program to improve its similarity to the target. In order to apply this scheme for domains that lack program annotations, we develop a self-supervised learning approach that integrates this edit network into a bootstrapped finetuning loop along with a network that predicts entire programs in one-shot. Our joint finetuning scheme, when coupled with an inference procedure that initializes a population from the one-shot model and evolves members of this population with the edit network, helps to infer more accurate visual programs. Over multiple domains, we experimentally compare our method against the alternative of using only the one-shot model, and find that even under equal search-time budgets, our editing-based paradigm provides significant advantages.more » « lessFree, publicly-accessible full text available December 10, 2025
-
The ability to edit 3D assets with natural language presents a compelling paradigm to aid in the democratization of 3D content creation. However, while natural language is often effective at communicating general intent, it is poorly suited for specifying exact manipulation. To address this gap, we introduce ParSEL, a system that enablescontrollableediting of high-quality 3D assets with natural language. Given a segmented 3D mesh and an editing request, ParSEL produces aparameterizedediting program. Adjusting these parameters allows users to explore shape variations with exact control over the magnitude of the edits. To infer editing programs which align with an input edit request, we leverage the abilities of large-language models (LLMs). However, we find that although LLMs excel at identifying the initial edit operations, they often fail to infer complete editing programs, resulting in outputs that violate shape semantics. To overcome this issue, we introduce Analytical Edit Propagation (AEP), an algorithm which extends a seed edit with additional operations until a complete editing program has been formed. Unlike prior methods, AEP searches for analytical editing operations compatible with a range of possible user edits through the integration of computer algebra systems for geometric analysis. Experimentally, we demonstrate ParSEL's effectiveness in enabling controllable editing of 3D objects through natural language requests over alternative system designs.more » « lessFree, publicly-accessible full text available December 19, 2025
-
It is imperative that robots can understand natural language commands issued by humans. Such commands typically contain verbs that signify what action should be performed on a given object and that are applicable to many objects. We propose a method for generalizing manipulation skills to novel objects using verbs. Our method learns a probabilistic classifier that determines whether a given object trajectory can be described by a specific verb. We show that this classifier accurately generalizes to novel object categories with an average accuracy of 76.69% across 13 object categories and 14 verbs. We then perform policy search over the object kinematics to find an object trajectory that maximizes classifier prediction for a given verb. Our method allows a robot to generate a trajectory for a novel object based on a verb, which can then be used as input to a motion planner. We show that our model can generate trajectories that are usable for executing five verb commands applied to novel instances of two different object categories on a real robot.more » « less
An official website of the United States government

Full Text Available